Publications

Scientific publications

  1. Nakai, A., Fukushima, Y., Yamamoto, A., Amatsu, Y., Chen, X., Nishigori, M., Yoshioka, Y., Kaneko, M., #Koshiba, T., and #Watanabe, T. (2024) Increased ROS levels in mitochondrial outer membrane protein Mul1-deficient oocytes result in abnormal preimplantation embryogenesis. FEBS Lett., in press. (#責任著者)
  2. Yasukawa, K. and #Koshiba, T. (2021) Mitochondrial reactive zones in antiviral innate immunity. Biochim. Biophys. Acta - Gen Subj., 1865, 129839. (#責任著者)
  3. Hanada, Y., Ishihara, N., Wang, L., Otera, H., Ishihara, T., Koshiba, T., Mihara, K., Ogawa, Y., and Nomura, M. (2020) MAVS is energized by Mff which senses mitochondrial energy metabolism via AMPK signaling for acute antiviral immune response. Nat. Commun., 11, 5711. (プレスリリース)
  4. Burtscher, J., Cappellano, G., Omori, A., Koshiba, T., and Millet, G.P. (2020) Mitochondria – in the crossfire of SARS-CoV-2 and immunity. iScience, 23, 101631.
  5. Moriyama, M., Nagai, M., Maruzuru, Y., Koshiba, T., Kawaguchi, Y., and Ichinohe, T. (2020) Influenza virus-induced oxidized DNA activates inflammasomes. iScience, 23, 101270.
  6. Yasukawa, K., Kinoshita, D., Yaku, K., Nakagawa, T., and #Koshiba, T. (2020) The microRNAs miR-302b and miR-372 regulate mitochondrial metabolism via the SLC25A12 transporter, which controls MAVS-mediated antiviral innate immunity. J. Biol. Chem., 295, 444-457. (#責任著者)
  7. #Koshiba, T. and Kosako, H. (2020) Mass spectrometry-based methods for analyzing the mitochondrial interactome in mammalian cells. J. Biochem., 167, 225-231. (#責任著者)
  8. Moriyama, M., Koshiba, T., and Ichinohe, T. (2019) Influenza A virus M2 protein triggers mitochondrial DNA-mediated antiviral immune responses. Nat. Commun., 10, 4624.
  9. Yoshinaka, T., Kosako, H., Yoshizumi, T., Furukawa, R., Hirano, Y., Kuge, O., Tamada, T., and #Koshiba, T. (2019) Structural basis of mitochondrial scaffolds by prohibitin complexes: Insight into a role of the coiled-coil region. iScience, 19, 1065–1078. (プレスリリース) (#責任著者)
  10. Moriyama, M., Igarashi, M., Koshiba, T., Irie, T., Takada, A., and Ichinohe, T. (2018) Two conserved amino acids within the NSs of SFTS phlebovirus are essential for anti-interferon activity. J. Virol., 92, e00706-18.
  11. Maruzuru, Y., Ichinohe, T., Sato, R., Miyake, K., Okano, T., Suzuki, T., Koshiba, T., Koyanagi, N., Tsuda, S., Watanabe, M., Arii, J., Kato, A., and Kawaguchi, Y. (2018) Herpes simplex virus 1 VP22 inhibits AIM2-dependent inflammasome activation to enable efficient viral replication. Cell Host Microbe, 23, 254-265. (プレスリリース)
  12. Yoshizumi, T., Imamura, H., Taku, T., Kuroki, T., Kawaguchi, A., Ishikawa, K., Nakada, K., and #Koshiba, T. (2017) RLR-mediated antiviral innate immunity requires oxidative phosphorylation activity. Sci. Rep., 7, 5379. (#責任著者)
  13. Moriyama, M., Chen, I-Y., Kawaguchi, A., Koshiba, T., Nagata, K., Takeyama, H., Hasegawa, H., and Ichinohe, T. (2016) The RNA- and TRIM25-binding domains of influenza virus NS1 protein are essential for suppression of NLRP3 inflammasome-mediated IL-1β secretion. J. Virol., 90, 4105-4114.
  14. Shibata, T., Maki, K., Hadano, J., Fujikawa, T., Kitazaki, K., Koshiba, T., and Kawabata, S. (2015) Crosslinking of a peritrophic matrix protein protects gut epithelia from bacterial exotoxins. PLoS Pathog., 11, e1005244.
  15. #Koshiba, T. (2015) Protein-protein interactions of mitochondrial-associated protein via bioluminescence resonance energy transfer. Biophys Physicobiol., 12, 31-35. (#責任著者)
  16. Yoshizumi, T., Ichinohe, T., Sasaki, O., Otera, H., Kawabata, S., Mihara, K., and #Koshiba, T. (2014) Influenza A virus protein PB1-F2 translocates into mitochondria via Tom40 channels and impairs innate immunity. Nat. Commun., 5, 4713. (プレスリリース) (#責任著者)
  17. Nguyen, T.T., Oh, S.S., Weaver, D., Lewandowska, A., Maxfield, D., Schuler, M.H., Smith, N.K., Macfarlane, J., Saunders, G., Palmer, C.A., Debattisti, V., Koshiba, T., Pulst, S., Feldman, E.L., Hajnóczky, G., and Shaw, J.M. (2014) Loss of Miro1-directed retrograde mitochondrial movement results in a novel murine model for neuron disease. Proc. Natl. Acad. Sci. USA, 111, E3631-E3640.
  18. Ichinohe, T., Yamazaki, T., Koshiba, T., and Yanagi, Y. (2013) Mitochondrial protein mitofusin 2 is required for NLRP3 inflammasome activation after RNA virus infection. Proc. Natl. Acad. Sci. USA, 110, 17963-17968. (プレスリリース)(F1000Primeにて紹介: Good)
  19. Shibata, T., Sekihara, S., Fujikawa, T., Miyaji, R., Maki, K., Ishihara, T., Koshiba, T., and Kawabata, S. (2013) Transglutaminase-catalyzed protein-protein cross-linking suppresses the activity of the NF-κB-like transcription factor Relish. Sci. Signal., 6, ra61.
  20. Sasaki, O., Yoshizumi, T., Kuboyama, M., Ishihara, T., Suzuki, E., Kawabata, S., and #Koshiba, T. (2013) A structural perspective of the MAVS-regulatory mechanism on the mitochondrial outer membrane using bioluminescence resonance energy transfer. Biochim. Biophys. Acta - Mol. Cell Res., 1833, 1017-1027. (#責任著者)
  21. Onoue, K., Jofuku, A., Ban-Ishihara, R., Ishihara, T., Maeda, M., Koshiba, T., Itoh, T., Fukuda, M., Otera, H., Oka, T., Takano, H., Mizushima, N., Mihara, K., and Ishihara, N. (2013) Fis1 acts as mitochondrial recruitment factor for TBC1D15 that involved in regulation of mitochondrial morphology. J. Cell Sci., 126, 176-185.
  22. #Koshiba, T. (2013) Mitochondrial-mediated antiviral immunity. Biochim. Biophys. Acta -Mol. Cell Res., 1833, 225-232. (#責任著者)
  23. #Koshiba, T., Yasukawa, K., Yanagi, Y., and Kawabata, S. (2011) Mitochondrial membrane potential is required for MAVS-mediated antiviral signaling. Sci. Signal., 4, ra7. (表紙採用) (#責任著者)
  24. #Koshiba, T., Holman, H.A., Kubara, K., Yasukawa, K., Kawabata, S., Okamoto, K., Macfarlane, J., and Shaw, J.M. (2011) Structure-function analysis of the yeast mitochondrial Rho GTPase, Gem1p: Implications for mitochondrial inheritance. J. Biol. Chem., 286, 354-362. (#責任著者)
  25. #Koshiba, T., Bashiruddin, N., and Kawabata, S. (2011) Mitochondria and antiviral innate immunity. Int. J. Biochem. Mol. Biol., 2, 257-262. (#責任著者)
  26. Yasukawa, K., Oshiumi, H., Takeda, M., Ishihara, N., Yanagi, Y., Seya, T., Kawabata, S., and #Koshiba, T. (2009) Mitofusin 2 inhibits mitochondrial antiviral signaling. Sci. Signal., 2, ra47. (#責任著者)
  27. Matsuda, Y., Koshiba, T., Osaki, T., Suyama, H., Arisaka, F., Toh, Y., and Kawabata, S. (2007) An arthropod cuticular chitin-binding protein endows injured sites with transglutaminase-dependent mesh. J. Biol. Chem., 282, 37316-37324.
  28. Matsushima, A., Kakuta, Y., Teramoto, T., Koshiba, T., Liu, X., Okada, H., Tokunaga, T., Kawabata, S., Kimura, M., and Shimohigashi, Y. (2007) Structural evidence for endocrine disruptor bisphenol A binding to human nuclear receptor ERRγ. J. Biochem. (Tokyo), 142, 517-524.
  29. Koshiba, T., Hashii, T., and Kawabata, S. (2007) A structural perspective on the interaction between lipopolysaccharide and Factor C, a receptor involved in recognition of Gram-negative bacteria. J. Biol. Chem., 282, 3962-3967.
  30. Koshiba, T., Detmer, S.A., Kaiser, J.T., Chen, H., McCaffery, J.M. and Chan, D.C. (2004) Structural basis of mitochondrial tethering by mitofusin complexes. Science, 305, 858-862. (Faculty of 1000 biologyにて紹介: Exceptional)
  31. Koshiba, T. and Chan, D.C. (2003) The prefusogenic intermediate of HIV-1 gp41 contains exposed C-peptide regions. J. Biol. Chem., 278, 7573-7579.

邦文総説

  1. 安川開、小柴琢己 (2023) 炎症制御におけるミトコンドリアの新規機能の解明. 実験医学, 41, 119-125.
  2. 平田聖里菜、小柴琢己 (2022) 自然免疫応答におけるミトコンドリアの役割. 医学のあゆみ, 281, 1157-1161.
  3. 平田聖里菜、錦織充広、小柴琢己 (2021) ミトコンドリア機能の調節に関わるプロヒビチン複合体の解析. ミトコンドリアダイナミクス ~機能研究から疾患・老化まで~, (株) エヌ・ティ-・エス, pp. 203-209.
  4. 平田聖里菜、小柴琢己 (2021) ミトコンドリアと免疫機能. FOOD Style 21, 25, 39-41.
  5. 錦織充広、小柴琢己 (2020) 抗ウイルス自然免疫におけるミトコンドリアの応答ゾーン. 福岡医誌, 111, 77-85.
  6. 小柴琢己 (2020) プロテオミクスによるミトコンドリアタンパク質複合体の解析. 生物物理, 60, 241-243.
  7. 小柴琢己 (2019) ミトコンドリアと抗ウイルス自然免疫シグナル. 実験医学, 37, 145-151. (表紙採用)
  8. 小柴琢己 (2018) ミトコンドリアを介した自然免疫応答. 医学のあゆみ, 265, 1101-1107.
  9. 小柴琢己、今村博臣 (2017) 蛍光ATPプローブによるミトコンドリア呼吸活性の評価. 生物物理, 57, 268-270.
  10. 小柴琢己 (2017) インフルエンザウイルス感染に伴うミトコンドリア形態への影響. 感染・炎症・免疫, 47, 42-44.
  11. 吉住拓馬、安川開、小柴琢己 (2016) ウイルスタンパク質とミトコンドリアとの相互作用. 福岡医誌, 107, 148-154.
  12. 小柴琢己 (2016) ミトコンドリア・ダイナミクスと抗ウイルス自然免疫. 細胞, 48, 39-41.
  13. 小柴琢己 (2015) 抗ウイルス自然免疫におけるミトコンドリアの役割. 細胞工学, 34, 571-575.
  14. 吉住拓馬、小柴琢己 (2015) A型インフルエンザウイルスタンパク質PB1-F2とミトコンドリアとの 相互作用. 生化学, 87, 144-148.
  15. 佐々木理、小柴琢己 (2014) 生体発光共鳴エネルギー転移を用いた生細胞内でのミトコンドリアタンパク質間相互作用解析. 生物物理, 54, 160-162.
  16. 小柴琢己 (2014) ウイルス自然免疫におけるミトコンドリアの生理的意義の解析. 薬学研究の進歩, 30, 7-11.
  17. 小柴琢己、久保山美彩 (2011) 細胞内におけるミトコンドリアの形態調節ならびに抗ウイルス免疫応答. 生物物理, 51, 174-177.
  18. 小柴琢己 (2011) ミトコンドリア膜電位と抗ウイルス自然免疫. 実験医学, 29, 1269-1272.
  19. 小柴琢己 (2010) ミトコンドリア外膜上でのウイルス免疫制御機構. 生化学, 82, 135-139.
  20. 小柴琢己 (2010) ミトコンドリア外膜タンパク質Mitofusin 2によるウイルス免疫制御機構 実験医学, 28, 429-432.
  21. 小柴琢己 (2005) ミトコンドリアに見る、生体膜融合機構. 生物物理, 45, 243-246.
  22. 小柴琢己、David C. Chan (2004) Mitofusinを介したミトコンドリアの融合機構. 細胞工学, 23, 1174-1175.
  • 福岡大学
  • 福岡大学 理学部
Page
Top
Copyright © The Koshiba Laboratory All Rights Reserved.